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Recent research on the agricultural impacts of climate change has
primarily focused on the roles of temperature and precipitation.
These studies show that India has already been negatively affected
by recent climate trends. However, anthropogenic climate changes
are a result of both global emissions of long-lived greenhouse gases
(LLGHGs) and other short-lived climate pollutants (SLCPs). Two
potent SLCPs, tropospheric ozone and black carbon, have direct
effects on crop yields beyond their indirect effects through climate;
emissions of black carbon and ozone precursors have risen dramat-
ically in India over the past three decades. Here, to our knowledge
for the first time, we present results of the combined effects of
climate change and the direct effects of SLCPs on wheat and rice
yields in India from 1980 to 2010. Our statistical model suggests that,
averaged over India, yields in 2010 were up to 36% lower for wheat
than they otherwise would have been, absent climate and pollutant
emissions trends, with some densely populated states experiencing
50% relative yield losses. [Our point estimates for rice (−20%) are
similarly large, but not statistically significant.] Upper-bound esti-
mates suggest that an overwhelming fraction (90%) of these losses
is due to the direct effects of SLCPs. Gains from addressing regional
air pollution could thus counter expected future yield losses resulting
from direct climate change effects of LLGHGs.
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Ever since the Green Revolution first staved off famines in the
1960s, Indian rice and wheat systems have grown over the

past half century to play critical roles in the world food economy:
India’s 1.2 billion people depend primarily on food produced
within the country, and other Asian and African nations rely
heavily on imports of Indian rice. During the 2007–2008 world
food price crisis, with wheat harvests failing elsewhere in the
world, India banned rice exports out of concern for domestic
food security, setting off a worldwide cascade of export bans and
food riots. Global food security is thus tightly linked with India’s
rice and wheat production. In 2008, India produced 148.8 million
tons of rice (paddy) and 78.6 million tons of wheat (Fig. S1). In
2006, before the food price spike crisis, India imported over 6
million tons of wheat (∼$1.3 billion) and exported over 4.4
million tons of milled rice (∼6.6 million tons of paddy equivalent,
∼$1.5 billion) (1).
Yields for wheat and rice in India have recently begun to level

off or even drop in some states (Figs. S2 and S3). This trend,
particularly for wheat, counters decades of increasing yields
driven by technological innovation (2). At the same time, growing
season temperature trends have been positive for major wheat-
and rice- producing Indian states (Fig. S4; precipitation trends
are mixed). Studies have shown that these climate trends have
had a negative impact on Indian agriculture, reducing relative
yields by several percent (3, 4). However, although temperature
and precipitation changes have and will continue to (5) impact
future yields, these two variables alone do not tell the entire story
of India’s changing crop yields.
Research in the past decade has underscored the critical im-

portance of short-lived climate pollutants (SLCPs)—nonlong-lived
greenhouse gases (non-LLGHG) climate warming pollutants—on

regional radiative forcing, precipitation, and monsoon patterns (6).
SLCPs include black carbon (BC) aerosols as well as the green-
house gases methane, tropospheric ozone, and hydrofluorocarbons
(HFCs); together these compounds have contributed roughly 40%
of the current radiative forcing (7, 8). Unlike the LLGHGs, which
can persist for centuries in the atmosphere, SLCPs have shorter
atmospheric lifetimes—from weeks (black carbon) to months
(ozone) or decades (methane and HFCs)—making them ap-
pealing mitigation targets (9–11).
SLCPs have indirect effects on agricultural productivity through

their impacts on temperature (all) and precipitation (BC). How-
ever, BC and ozone are of particular interest for agriculture because
they also have direct impacts on crop growth. BC aerosols alter the
quantity and nature of the solar radiation reaching the surface (12),
and ozone is directly toxic to plants (13). India’s breadbasket, the
Indo-Gangetic Plains, is subject to a dramatic annual buildup of
these (and other) pollutants before the monsoon each year [known
as an Atmospheric Brown Cloud, or ABC (6)]. This spatial co-
incidence is shown in Fig. 1: the most intensively farmed areas in the
region area also areas with high average aerosol optical depth and
large surface ozone concentrations. Particularly for high-pollution
regions like India, understanding the specific role of SLCPs in crop
productivity will be critical to assessing the overall impact of climate
change and air quality on agriculture and food security.
To our knowledge, this is the first such study to examine both

the impacts of climate (temperature and precipitation, or T and
P trends) and the direct effects of SLCPs (BC and ozone) on
historical yields. Previous work has used statistical models to es-
timate temperature and precipitation impacts on historical crop
yields (3); similar statistical analyses have explored indirect and
radiative impacts of ABCs on rain-fed rice yields in India (4, 14).

Significance

Rising temperatures because of increased emissions of long-lived
greenhouse gases (LLGHGs) have had and will continue to have
significant negative impacts on crop yields. However, other cli-
mate changes caused by short-lived climate pollutants (SLCPs)
are also significant for agricultural productivity. The SLCPs black
carbon and ozone impact temperature, precipitation, radiation,
and—in the case of ozone—are directly toxic to plants. To our
knowledge, this study provides the first integrated historical
examination of the role of both SLCPs and LLGHGs onwheat and
rice yields in India, and finds that the majority of losses are at-
tributable to SLCPs. Agricultural cobenefits from SLCP mitigation
are expected to be large, and because SLCPs have short atmo-
spheric lifetimes, almost immediate.
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On the ozone side, chamber, open-top, and other field experi-
ments have resulted in hundreds of dose–response relationships
for individual crop cultivars over a range of agro-ecological zones
and ozone concentrations (15–18). These dose–response rela-
tionships have been used to estimate global and regional crop loss
in individual years, as well as into the future under different
emissions scenarios (11, 19–24). These studies show large ozone
impacts: one estimated that global crop loss caused by surface
ozone in the year 2000 reached over 79 million metric tons ($11
billion) (21).
In this report, we attempt to harmonize the existing research

on climate and pollution impacts on agriculture. We do this by
bringing SLCP emissions into a statistical analysis of historical
yield data in India for both rice (predominantly rainy season)
and wheat (dry season). By explicitly including pollution varia-
bles along with climate variables in our analysis, we provide
upper-bound estimates of direct SLCP impacts on yields.

Linking SLCP Emissions to Crop Yield Impacts
Although conceptually simple, this quantification of SLCP
impacts on crop growth is complicated by: (i) the lack of near-
surface BC or ozone concentrations over the Indian subcontinent,

(ii) coemmission and mixing of BC with other aerosol precursors
and species, and (iii) the nonlinear nature of tropospheric ozone
formation. Each of these is discussed briefly below and in greater
detail in the SI Text.

Emissions Inventories
No long-run records of surface concentrations for BC and ozone
exist for India; the best proxy for these pollutant concentrations
is therefore an emissions inventory of aerosols and ozone pre-
cursor compounds (e.g., refs. 25 and 26). Although not equivalent,
emissions of pollutants are nevertheless related to their ambient
surface concentrations (e.g., refs. 27–30). Moreover, although crop
impacts depend on concentrations, emissions are ultimately the
policy-relevant variables; establishment of the link between emis-
sions (as opposed to concentrations) and yields is therefore de-
sirable. The difficulty in this emissions-based approach is then in
how to construct emissions variables that can adequately serve as
proxies for the basic chemistry and physics governing ozone for-
mation and aerosol radiative impacts.

Black Carbon
The direct impacts of BC on radiation and crop growth are
straightforward: BC is an absorbing aerosol that reduces both
direct and diffuse light available to plants, and—all else equal—
should therefore lower yields. However, this effect is difficult to
isolate because BC is usually coemitted or mixes in the atmo-
sphere with other scattering aerosols to create compound par-
ticles of varying radiative properties (31). Scattering aerosols also
reduce total surface radiation but increase the diffuse fraction;
research has shown that plants are often able to more efficiently
use diffuse light for photosynthesis (32). Two earlier studies
found no significant impact of total surface radiation on rice
yields (4, 14). The models in these studies made no distinction
between direct and diffuse light, and may have found no effect
because the overall reduction in total surface radiation was offset
by an enhanced fraction of diffuse radiation. The studies also
examined only kharif (rainy season) rice, where expected aerosol
impact would be lower.
As with BC, no long-run records exist for the main scattering

aerosols: organic carbon (OC) and sulfates. (The main sources of
BC in India are domestic biofuels—wood, dung, and crop resi-
dues for cooking—and fossil fuels. Biomass burning is also the
main source of OC emissions, whereas sulfates are formed from
gas-to-particle conversion of sulfur dioxide, SO2, a main com-
ponent of coal-fired power plant emissions. Average growing
season surface radiation (total = direct + diffuse) for the main
wheat- and rice-producing states in India over the past three
decades is shown in Figs. S5 and S6 (data are from ref. 33). This
dramatic surface dimming of 7–10% is attributed (6, 34) to in-
creased aerosol emissions in the region; total BC+SO2 emissions
and reduction in total surface radiation are correlated with R2 =
0.44. Recent research indicates that the net radiative forcing of
OC (once thought to be pure scattering) is in reality close to zero
(31), and that the relative abundance of BC and sulfates is the
main determinant of overall aerosol radiative forcing (35). We
therefore include BC and SO2 emissions (as the main precursor
for sulfate aerosols) in our model, and omit OC.

Ozone
Tropospheric ozone (O3) formation depends on the presence of
methane, carbon monoxide, or volatile organic compounds (VOCs)
and nitrogen oxides (NOx = NO + NO2). [We use NOx and non-
methane VOCs (NMVOCs) in our analysis because CO and
methane (CH4) contribute predominantly to background ozone
levels.] At low NOx concentrations, increasing levels of NOx and, to
a lesser extent NMVOCs, result in higher ozone concentrations. At
high NOx concentrations, increased NOx can conversely result in
net titration of ozone out of the atmosphere, bringing overall levels
down (with changes in NMVOC concentrations having little im-
pact). The determinant of these two NOx “regimes” is the ratio of
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Fig. 1. (A) Cultivated fraction of each 5′ x 5′ cell for (Left) wheat and (Right)
rice. States included in this analysis for each crop are labeled. Data are from
ref. 58. (B) MODIS (Terra) Aerosol Optical Depth at 550 nm in 2008 for (Left)
March–April–May average, coinciding with the peak of the wheat season,
and (Right) August–September–October, coinciding with the peak of the
kharif rice season. (C) Modern-Era Retrospective Analysis (MERRA) estimated
24-h average surface ozone mixing ratio (ppbv) in 2008 for (Left) wheat
harvest season, March–April–May average, and (Right) kharif rice harvest
season, August–September–October average (64).
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summed VOCs (weighted by reactivity) to NOx (36). Our model
therefore includes NOx, NMVOCs, and the NMVOC:NOx ratio.
No long-run records of either surface ozone or ozone pre-

cursor concentrations exist for India, but global background
levels of tropospheric ozone are increasing in general (37), and
several site-specific measurements in India corroborate this trend
(38, 39). Emissions of all ozone precursors are rising in India,
with NOx emissions outpacing NMVOCs; the ratio of these two
precursors varies dramatically across the country (Fig. S7). The
main sources of NOx emissions are the transportation sector and
coal combustion; VOCs are emitted in biomass combustion,
a large variety of industrial processes, and in vehicle exhaust. (It
should also be noted that NOx is a strong oxidant and damaging
to plants on its own.) Figs. S5–S8 show trends and spatial dis-
tribution of BC, SO2, NOx, and NMVOC emissions.

Model Overview
To quantify the impacts of climate and air pollution trends on
Indian agricultural production, we constructed a dataset of rice
and wheat yields, surface air temperature, precipitation, and
aerosol and ozone precursor emissions for major Indian wheat-
and rice-producing states from 1980 to 2010. Fig. 1A shows the
states included in the analysis. To relate climate and air pollution
to crop yields, we followed techniques well established in the
literature (3, 4, 14, 40) and regressed state-level wheat and rice
yields in India on weather and emissions variables using the basic
regression model:

lnðYitÞ=~β×~Xit + Si + fiðtÞ+ eit:

In this specification, Yit is crop yield (kilograms/hectare of
either wheat or rice) for state i in year t, eit are the error terms,
and the β-coefficients are the terms of interest minus the state-
independent coefficients for dependence of yield on the climate
and pollution variables, Xit. Log-transforming Yit normalizes the
distributions and makes results interpretable across orders of
magnitude (i.e., as percent changes). Si are state-fixed effects
(state-specific intercepts), which control for time-invariant dif-
ferences between states like soil type; fi(t) are time controls,
which account for time-varying differences between states like
rates of technology adoption, governance, policy, and so forth
(we use state-specific linear and quadratic time trends, with
other specifications presented in SI Text). [Previous studies using
statistical panel models to estimate climate impacts on agricul-
ture have similarly included region-specific and pooled quadratic
time trends to capture a general empirical leveling-off of yields
(3, 4, 14, 40). Because these previous studies have not included
SLCPs explicitly, they implicitly capture SLCP direct impacts
with the quadratic time terms meant to capture unaccounted-for
technology effects. Moreover, all such panel studies—this one
included—implicitly capture SLCP indirect impacts in the coef-
ficients for temperature and precipitation.]
The climate and emissions variables included in our model are:

T and P (average growing season temperature and precipitation),
T2 and P2 (average growing season temperature-squared and
precipitation-squared as measures of extremes), ln(SO2) and ln(BC)
(emissions as aerosol concentration proxies), and ln(NOx),
ln(NMVOC), and the ratio of those two terms. Satellite and
European air quality monitoring station data are used to justify
the ozone specification in the model, to determine appropriate
functional form, and to verify the existence of both NOx regimes
over the study area, as described in Fig. 2 and below.
To contextualize our regression analysis, we then calculated

the relative yield change (RYC) in 2010 as the percentage
change between our model predictions and a counterfactual
scenario without long-run climate and pollution trends (i.e., we
use our model to project yields from 1980 to 2010, with climate
and emissions variables held at average 1980 levels). We com-
pared the 2006–2010 average for both real-world and counter-
factual scenarios to more accurately reflect long-run differences.
We then weighted the state-level RYC results by either crop area

or production (both weightings are presented below) and summed
to derive national-level yield impacts of recent climate and
pollution trends.

Results
Relative Impacts of Climate and Pollution at the National Level. The
main results of our analysis are presented in Fig. 3, with full
regression results in Table S1. Average (median) RYC is plotted
as red diamonds, with error bars calculated by bootstrapping the
model 1,000 times (clustered on years, with replacement) and
selecting the 5th–95th percentile range. Ex ante, we would ex-
pect to see larger impacts on wheat than rice for two reasons: (i)
wheat’s main growing season coincides with the greatest buildup
of pollution over the Indian subcontinent; and (ii) wheat shows
more sensitivity than rice to ozone in chamber experiments. In-
deed, we found that wheat yields were over 36% lower in 2010
than they would have been absent climate and SLCP emissions
trends (−36.92% weighted by area; −37.91 weighted by pro-
duction). For rice, our median estimates suggest that yields were
over 20% lower (−20.56 weighted by area; −20.85 weighted by
production), but the 5th–95th confidence interval includes zero
for rice. Our analysis indicates that 90% of the RYC in wheat can
be attributed to SLCPs (Fig. 3, yellow bars), as opposed to trends
in average temperature and precipitation (Fig. 3, blue bars).
At the country level our findings for climate (T and P) impacts

over this time period (RYC of −3.5% for wheat and minimal for
rice) are similar to previous studies (3, 4, 14). We find that a 1 °C
increase in temperature leads to a yield decline on average of 4%
for wheat and 5% for rice. The coefficients for temperature
(Table S1) are statistically significant for both crops; pre-
cipitation is not statistically significant for either. [Significance at
90% with standard errors corrected for spatial and serial corre-
lation (41).] The climate portion of the RYC for wheat may be
a lower-bound, given that irrigation mitigates some temperature
impact through soil moisture (42).
It is less straightforward to compare our results for aerosol and

ozone precursor effects to previous studies. Two earlier studies
found no significant impact of total surface radiation on rice
yields (4, 14). The models in these studies made no distinction
between direct and diffuse light, and may have found no effect
because the overall reduction in total surface radiation was offset
by an enhanced fraction of diffuse radiation, which plants use
more efficiently for photosynthesis. The studies also examined
only kharif (rainy season) rice, where expected aerosol impact
would be lower. The coefficients for our preferred model spec-
ification (Eq. 1), in which sulfates and BC are accounted for
separately, are negative for wheat, and statistically significant.
Auffhammer et al. (14) found that ABCs resulted in a RYC of
−6% over 30 y (14) for rain-fed rice in India. Although the total
impact of aerosols varies a bit depending on model specification,
we find a similar magnitude impact.
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Fig. 2. Relationship between yearly mean ozone and precursor concentrations
at Europeanmonitoring stations observing ozone, NOx, and NMVOCs. Main plot
shows the existence of low- and high-NOx regimes (with opposite-signed rela-
tionships). (Inset) The relationship between ozone and the NMVOC:NOx ratio.
These data were used to guide choice of functional form in our model. Data
from AirBase v.6 (65).
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Ozone precursor emissions are significant for both crops. No
previous studies have examined the statistical historical re-
lationship between ozone precursor emissions and crop yields,
but several studies have used chemical transport models to
simulate atmospheric ozone concentrations, and have then ap-
plied concentration–response relationships derived from field
experiments to estimate crop loss caused by ozone exposure (19–
22). Van Dingenen et al. estimate 7–12% for wheat and 3–4%
for rice in the year 2000 (20); Avnery et al. estimate that in the
year 2000, surface ozone reduced global wheat production by
3.9–15% (21), with additional RYC between 2030 and 2000 up to
−26% (22), very similar to our estimates (which also include
aerosol impacts).

State-by-State Variation. There is substantial variation in relative
impacts of climate and SLCPs across states. Some of the most
dramatic impacts for both wheat and rice have occurred in Uttar
Pradesh and Uttaranchal (UP). UP, India’s most populous state,
is the largest producer of both wheat and rice in the country,
providing over one-third of India’s wheat and 14% of India’s
rice. In particular, wheat yields for UP are ∼50% lower than they
otherwise would have been absent climate and pollution trends,
and over two-thirds of that RYC is attributable to SLCP emissions
trends (state-by-state time projections are shown in Fig. S9).
Rajasthan, although producing a lower percentage of India’s

wheat, shows the greatest overall wheat RYC (more than 50%).
The relatively large climate impacts on wheat in both UP and
Rajasthan are driven by temperature, as the two states have had
the largest increases in growing season temperature since 1980
(Fig. S4) (0.87° for Rajasthan and 0.52° for UP). Four of the
main wheat-producing states—UP, Rajasthan, Madhya Pradesh
and Chhattisgarh, and Bihar and Jharkhand—have large

negative SLCP impacts, whereas Punjab and Haryana show little
to no impact of either SLCPs or climate (not statistically sig-
nificant at 90%). Moreover, the uncertainties in Punjab and
Haryana are greater than for other states, and across alternative
models specifications (Figs. S10–S12). Two factors likely explain
these differences. First, Punjab and Haryana are the most tech-
nologically advanced wheat-producing states in India, with the
highest yields and the greatest yield gains over the time period (Fig.
S2); they also feature some of the lowest estimated crop yield gaps
in India (and the world) (43), meaning they have been closest to
achieving biological potential despite climate and emissions
changes (Fig. S9). However, in addition, the intricacies of ozone
production likely explain the SLCP impact differences (see below).
For rice, the overall climate and pollution impacts are lower,

and the state-by-state variation is less than for wheat (see also
Fig. S13 for kharif-only analysis). Most notably, the southeastern
states of Tamil Nadu and Andhra Pradesh show higher relative
climate impacts; these are two of the least-polluted states in the
study region (e.g., Fig. 1 and Figs. S5–S8); they have also fea-
tured significant growing season temperature increases (Fig. S4).
The states of the heavily polluted northern and eastern Indo
Gangetic Plains (UP, Bihar and Jharkhand, West Bengal) all
exhibit SLCP RYC of −15% or more. Haryana and Punjab, the
two states with the smallest SLCP impacts in wheat, do not di-
verge from the other states in rice impacts. The difference in
SLCP impacts between the two crops for Punjab and Haryana is
likely dominated by differences in rates of ozone formation in
the two states between the two seasons.
Studies suggest that in the summer monsoon months NOx and

ozone concentrations are higher than in winter, and remain
higher in those two states than elsewhere (44–46). This finding
may be because of higher temperatures (47) and higher con-
centrations of NMVOCs from biomass burning (48, 49) [tradi-
tionally one of the biggest sources of uncertainty in emissions
inventories (50)] during the rice growing season. Additionally,
the possibility exists that farmers in these two states may be
adapting wheat crops more successfully than rice crops by
selecting cultivars with higher ozone resistance (although such
potential is limited) (23, 51).
As shown in Fig. S7, NOx and NMVOC emissions have risen

fairly steadily in all six states, but the ratio of the two differs across
states. In particular, we expect states with higher NMVOC:NOx
ratios to have higher ozone concentrations and therefore higher
RYC, but states with very high NOx concentrations are at the very
least VOC-sensitive regimes, and might actually have net titration
of ozone from the atmosphere (See SI Text for a more detailed
discussion). Punjab and Haryana have very high NOx emissions,
but low NMVOC:NOx ratios, whereas the other four states have
lower overall NOx emissions but higher NMVOC:NOx ratios.
We examined satellite data to confirm the plausibility of dif-

ferential ozone impacts across states. Previous work (30) showed
that the ratio of columnar formaldehyde (HCHO) to nitrogen
dioxide (NO2) was a suitable proxy for the VOC:NOx ratio and
could be used to distinguish NOx-sensitive from NOx-saturated
regimes. We replicated this methodology using data from the
Ozone Monitoring Instrument (52) and found that the re-
lationship between columnar ozone and NO2 switches sign at the
HCHO:NO2 value of ∼4. As shown in Fig. 4, satellite data from
2008 indicate that the northwestern Indo-Gangetic Plain (Pun-
jab/Haryana) has a lower HCHO:NO2 ratio than the eastern
Indo-Gangetic Plain (e.g., UP/Bihar). Indeed, for most of the
wheat-growing season, much of Punjab and Haryana is NOx-
saturated (whereas both are NOx-sensitive during the rice
growing season). These satellite data confirm the existence of
different NOx regimes across India during the wheat season, and
thus provide additional support for our preferred model speci-
fication (as opposed to a simpler specification that simply in-
cluded precursors together or omitted the VOC:NOx ratio).
Further research is needed to fully flesh out these dynamics,
particularly as panel statistical analyses are becoming the tool of
choice for agricultural impact assessments.

A

B

Fig. 3. RYC resulting from climate and SLCPs for (A) wheat and (B) rice. For
both crops, RYC is calculated as [Model(2006–2010 avg) − Baseline(2006–2010 avg)]/
Baseline(2006–2010 avg) (plotted as red diamonds). The portion of the total
yield change because of temperature and precipitation trends (blue bars) is
estimated using the coefficients in Table S1 and the average trends in T and
P (Fig. S4). The remainder is a result of SLCPs. Country totals are estimated by
summing state values weighted by total area. Error bars are constructed for
each state by bootstrap resampling the model 1,000 times and selecting the
95% range.
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Discussion
Several caveats to this analysis exist. First, meso-scale transport
of pollutants by winds to neighboring states could skew results
(11, 53). This is an important subject for future research, as the
policy implications for local and transported pollutant impacts
would be quite different. A more comprehensive surface ozone
and SLCP monitoring network could be used to investigate the
origins of pollution by examining the correlation between local
emissions, local tropospheric O3 formation, and direct/diffuse
radiation; these data could in turn be used to cross-check
chemical transport models and to create observationally con-
strained emissions inventories. Second, this analysis ignores
interdependencies between several of the independent variables:
for example, ozone formation is a function of temperature as
well as precursor concentrations; precipitation removes aerosols
from the atmosphere.
Most important, as with any statistical analysis, our results

depend on model specification and choice of a baseline (or
counterfactual) scenario. Our model includes state-specific lin-
ear and quadratic time trends, allowing for unknown variables—
like technology and policy changes—to account for the slope and
curvature of yield trends in each state. For our baseline scenario,
we use the coefficients from our model to project yields forward,
absent the long-run trends in emissions, temperature, and pre-
cipitation. We thus assume that these time trends in the coun-
terfactual scenario are independent of pollution and emissions
trends; this is likely untrue because industrialization and mech-
anization likely contributed both to increased emissions and to
higher yields. For this reason, we consider our estimates to be
upper-bounds.
Finally, our analysis is statistically limited in two key ways.

First, the study area is geographically small (i.e., the number of
observational units is low), and second, emissions trends have
been similar across the region, limiting the amount of in-
formation that can be gleaned from this scale of analysis. These
limitations are discussed in greater detail in SI Text, Tables S2
and S3, and Fig. S14.
Our results nevertheless indicate that SLCPs have had sig-

nificant impact on crop yields in India in recent decades. The
main wheat-producing state (UP) has been hit especially hard;
rice-producing states in the heavily polluted northern Indo-
Gangetic Plains have also been significantly negatively affected.
For context, the yield loss for wheat attributable to SLCPs
alone in 2010 (−18.9%) corresponds to over 24 million tons of
wheat: around four times India’s wheat imports before the
2007–2008 food price crisis and a value of ∼$5 billion. Miti-
gation of SLCP emissions in India could thus have important

food security impacts both domestically and internationally.
Impacts on Chinese agriculture would be similarly large, as
emissions of SLCPs by China are larger by a factor of two to
three (for a smaller total arable land area). Finally, under the
simplistic assumption that India’s 2010 wheat yield loss was
compensated for by cropland expansion and increased pro-
duction elsewhere, an additional 1.1 GtC (as CO2) would have
been released into the atmosphere from land conversion alone
(using global averages) (54).
To our knowledge, this analysis for the first time decouples the

historical impacts of climate and pollution, and thus offers a
grounded, upper-bound assessment of SLCP mitigation poten-
tial. Yield increases from reduction of air pollution could help
offset anticipated future expected yield losses resulting from
temperature and precipitation changes. In the short term, this is
an appealing option because SLCP mitigation will produce im-
mediate results that can help counter the impacts of climate
changes and sea level rise (55) already “locked in” from histor-
ical LLGHG and SLCP emissions. In the long term, although
farmers may select/breed more pollution-resilient cultivars or
alter management practices to help minimize such losses (51,
56), air pollution mitigation—particularly of ozone precursors—
will become an ever-more important food security measure.

Materials and Methods
We constructed state-level climate and pollutant variables by averaging
gridded temperature, precipitation, and emissions data over crop area and
growing season for each crop and aggregating to the state level (Figs. S4–S7;
to give an idea of spatial heterogeneity, average emissions of SO2, BC, NOx,
and NMVOCs during the wheat season for 2008 are shown in Fig. S8). Wheat
is a winter crop in India; it is planted in November–December and then
harvested in March, April, and May. This is the dry season, and almost all
wheat in India is irrigated. Indian rice is grown in two main seasons. The
main kharif rice crop (in which over 85% of rice is produced) coincides with
the monsoonal rains: planting occurs in M̃ay–June and harvest is August,
September, and October. The second rabi rice crop is a winter crop, roughly
coinciding with the wheat season. We gathered state-level yield data for
wheat, kharif rice, and rabi rice, and grouped them for analysis by crop (i.e.,
one analysis for wheat, and one for rice, including kharif and rabi). For rice,
we used the entire period between planting and harvesting as the growing
season; for wheat, we used the 120 d before harvest, in agreement with
previous work (3). We use 1979 boundaries for Indian states in this analysis,
with states that split after 1979 (e.g., Bihar and Jharkhand, UP, and Madhya
Pradesh and Chhattisgarh) considered together for the period of analysis.
The states included in this analysis (Fig. 1) represent over 80% of rice pro-
duction/area and over 85% wheat production/area.

State-level yield, production, and area data for India are from IndiaStat.
com, aggregated from state and national agricultural ministries (57). Grid-
ded crop area estimates (58) give the percentage of each 5-min cell devoted
to each crop, and crop growing season data (59) gives planting and har-
vesting dates at 5-min resolution for all major crops. Temperature and
precipitation data are taken from the Monthly Air Temperature and
Monthly Total Precipitation Time Series (1900–2010) compiled by the Uni-
versity of Delaware climate research group (0.5 × 0.5 monthly averages) (60).
Gridded emissions of SO2, BC, NOx, and NMVOCs are annual historical esti-
mates from the Regional Emissions Inventory in Asia at 0.5 × 0.5 resolution,
available monthly from 1980 to 2010 (26). [We repeat our analysis using an
alternative climate dataset (61), maximum and minimum temperatures (61,
62), and an alternative emissions inventory (63), as robustness checks in the
SI Text.] Solar radiation data (Figs. S5 and S6) was provided by the World
Radiation Data Center (33). Sites with data covering the entire period were
used, including (India) Ahmadabad, Bhaunagar, Bombay, Calcutta, Goa,
Jodhpur, Kodiakanal, Madras, Nagpur, New Delhi, Poona, Shillong, Tri-
vandrum, Vishakhapatnam, (Pakistan) Lahore City, and (Sri Lanka)
Colombo. Daily global radiation data were averaged and monthly values
interpolated across the region with the edges of the region set to the
median values.
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Fig. 4. (Left) Map of India showing average December–January–February
HCHO:NO2 ratio. The 2° cells in Punjab (red) and UP/Bihar (blue) are used for
comparative analysis in the right panel. (Right) Distribution of HCHO:NO2

ratio in grid cells in two comparison regions for 2008, by month. The line
(ratio = 4) represents the empirically derived transition between ozone ti-
trating (i.e., the relationship between columnar ozone and NO2 is negative)
and NOx-sensitive (the relationship is positive) regimes. In the wheat-
growing season, Punjab/Haryana is largely NOx-saturated, whereas UP/Bihar
is NOx-sensitive.
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SI Text
Model Details. Our model includes state fixed effects (Si in Eq. 1)
to account for time-invariant differences across the region (e.g.,
soil type), and state-specific linear and quadratic time trends
[f(t)] to account for divergent evolution of policies, infrastructure,
and management over time between states. We do not explicitly
include any technology or management variables (e.g., fertilizer
application rates, use of high-yielding varieties, irrigation cover-
age, and so forth) in any of the models because these changes are
captured to some extent in the state-specific time trends. The
inclusion of the linear time term effectively detrends the data so
that we are not simply correlating increasing quantities (yield,
temperature, emissions, and so forth). The inclusion of the qua-
dratic term allows for the possibility that other nonclimate,
nonpollution factors may contribute to a leveling-off of yields.
Because the dependent variable (Yit) is logged, we can interpret
results in terms of percent changes in yield.
Our model includes both climate and pollution variables: T and

P, the average growing season temperature and precipitation, as
well as T2 and P2, the average growing season temperature-
squared and precipitation-squared. Inclusion of these squared
terms to some degree accounts for extreme temperature and
precipitation events and also ensures that our model accounts
for weather variations across sites, and not just within sites (1).
We standardize T and P by subtracting their means and dividing
by their standard deviations (SDs). This approach allows us to
interpret the regression coefficients in terms of SDs [i.e., a +1 SD
change in T results in a ðβT + 2  p  βT2Þ  p  100% change in Y]. The
other variables used are: ln(SO2), average sulfur dioxide emissions
(kg m−2 s−1); ln(BC), the average BC emissions (kg m−2 s−1);
ln(NMVOC), the average emissions of nonmethane volatile or-
ganic compounds (kg m−2 s−1); ln(NOx), the average emissions
of nitrogen oxides (kg m−2 s−1); and the ratio ln(NMVOC):
ln(NOx). The use of logged emissions variables allows for the
interpretation of regression coefficients in terms of elasticities;
that is, a 1% change in sulfur dioxide emissions leads to a βSO2

%
change in yield, and so forth. The physical meaning of the pol-
lution variables (including physical rationale for the logged form)
is discussed in greater detail below; sources for all of the above-
mentioned data can be found in Materials and Methods. As de-
scribed in Materials and Methods, emissions are aggregated over
crop area and growing season (for either wheat or rice) to the
state-year from monthly gridded datasets.
To calculate the impacts of climate and pollution on yields, we

calculated the percent change between predicted values from our
main model and predicted values from a baseline scenario. (RYC
is calculated using average 2006–2010 values for both model and
baseline to avoid influence of fluctuations.) The baseline sce-
nario is counterfactual: it includes only historical technology
trends and effectively holds T, P, and aerosol and ozone pre-
cursor emissions at 1980 levels (average 1980–1981 levels, to
avoid having results influenced by endpoints). These results are
presented in Fig. 3. Error bars (90% confidence) are constructed
by bootstrap resampling the model 1,000 times and selecting the
5th–95th percentile range. To calculate overall impacts, we
summed the state-wide percent changes weighted by area (e.g.,
totals in Fig. 3) or production (numbers given in main text).

Emissions Variables, Aerosols, and Tropospheric Ozone Chemistry.
Aerosols. Our models give a more complete accounting than
previous work (2, 3) of the impacts of short-lived climate forcers
on surface radiation by including gridded emissions of sulfur

dioxide (SO2) and black carbon (BC) as markers for surface
radiation changes. We include SO2 as a proxy for sulfate aero-
sols, because it is the main anthropogenic precursor to sulfates
(atmospheric sulfate ions are formed by photochemical oxida-
tion of SO2 followed by gas-to-particle conversion). BC is a by-
product of biomass and fossil fuel combustion (especially diesel);
it can be found in the atmosphere in pure (BC) form or in
various mixtures with organic carbon (OC) compounds and
sulfates. We do not include OC here as it usually appears as
Brown Carbon (BrC), the radiative properties of which vary (4).
Ozone precursors. Tropospheric ozone (O3) forms when ozone
precursor compounds react in the presence of sunlight. Forma-
tion is highly localized and depends on the presence of both
volatile organic compounds (VOCs) or carbon monoxide (CO)
and nitrogen oxides (NOx = NO + NO2). (We use VOCs for the
remainder of this discussion, although as noted CO can sub-
stitute for a VOC in the initial reaction. See below for alternate
ozone specifications.) Formation is triggered when a VOC reacts
with OH in the atmosphere to form a peroxy radical. These
radicals (the hydroxyl, HO2, is the simplest of the family, rep-
resented in general by RO2) then combine with NO to produce
NO2. At lower NOx concentrations, in the presence of sunlight,
NO2 is photolyzed, providing the extra O that combines with O2
to form ozone. At high NOx concentrations, NO conversely ti-
trates ozone out of the atmosphere, pulling overall concen-
trations down. The determinant of these two NOx regimes is the
ratio of summed VOCs (weighted by reactivity) to NOx (5).
Our model attempts to account for the potential existence of

both high- and low-NOx emissions areas across the study region
and represent in a heuristic way some of the above chemistry by
including ln(NOx), ln(NMVOC), and the ratio of ln(NMVOC):
ln(NOx) (unweighted) in the regression. [Note: VOCs typically
include methane, a greenhouse gas that has increased tremen-
dously at global levels over the past decades, but is not usually
part of local/regional smog events. It has a fairly uniform global
distribution, a longer lifetime than many SLCPs, and is less re-
active than many other VOCs. Furthermore, methane is produced
during rice cultivation, making it endogenous. We therefore only
use NMVOCs (nonmethane VOCs) in this analysis.] At high NOx
concentrations, ozone formation is more sensitive to NMVOCs in
general (the reaction is NMVOC-limited, and increases in NOx
may result in net titration of O3); at lower NOx concentrations,
increases in either NOx or NMVOCs should lead to the formation
of ozone (and a decrease in yields). However, the NMVOC:NOx
ratio determines the limiting precursor at any given VOC and
NOx level. The likelihood of high-NOx regimes in the region is
indicated by modeling studies (6, 7), and we find evidence of both
NOx regimes in our analysis, as shown in Figs. 2 and 4 and dis-
cussed in the main text. (We also conducted the same analysis with
different ozone precursor specifications; see below.)
To further inform our model specification, we examined the

existing historical data on tropospheric ozone and ozone pre-
cursor concentrations in Europe (Fig. 2). Using the European
Environment Agency’s AirBase database (8), we found the sites
and years with valid annual concentration measurements of both
ozone and ozone precursors. We then examined the functional
relationship between ozone, NOx, total VOCs, and VOC:NOx
using this restricted dataset (n = 57 site years). The fit between
O3 and the logarithm of precursor concentrations (for both NOx
and VOCs independently, and for the ratio term) was much
better than the linear fit. Nevertheless, one can see that, for
these sites, an empirical NOx threshold for low- and high-NOx
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regimes can be determined (∼30 μg NO2/m
3): in the low-NOx

regime, O3 concentrations increase slightly or remain flat with
increasing NOx; in the high-NOx regime, O3 concentrations drop
dramatically with increasing NOx (ozone-titrating). We divided
the data into low and high NOx to examine the O3-NOx-VOC
relationship in these two regimes. [Note: Most of these sites are
urban and are therefore likely in the high NOx regime (i.e.,
ozone-titrating). This can be seen in the ratio of observations
above and below the high-NOx threshold.]
We looked at the equation: O3 ∼ ln(NOx) + ln(VOC) +

[ln(VOC):ln(NOx)] for high- and low-NOx regimes. At low-
NOx concentrations, both NOx and VOCs are statistically sig-
nificant predictors of ozone concentrations, and the coefficients
for ln(NOx) and the ln(VOC):ln(NOx) ratio are positive. For high
NOx concentrations, only NOx is a statistically significant pre-
dictor of ozone concentrations, with a negative coefficient. (For
the full sample, the coefficients mimic the high-NOx subsample,
but with a lower R2 value, which makes sense given the urban
location of most sites in the sample.)
In our analysis we used estimated emissions in lieu of con-

centrations, because no long-term records of ozone and ozone
precursor concentrations exist for India. This analysis therefore
assumes that concentrations are proportional to emissions; future
work should probe this relationship directly. We also consider
only total NMVOC emissions, without accounting for their rel-
ative reactivity.

Alternative Model Specifications. Consequences of an emissions-based
approach. As discussed above, emissions are related—but not
equivalent—to concentrations, and it is concentrations of BC
and ozone that determine radiation changes and plant toxicity ex-
posure, respectively. Using emissions variables (which are them-
selves estimates constructed from bottom-up technology surveys) as
proxies for concentrations may result in either overestimation (by
not accounting for deposition, precipitation, and so forth) or un-
derestimation (because of undercounting in emissions inventories)
of impacts. Once a reasonable time series of ozone and precursor
concentrations exists, the relationship between SLCP emissions,
direct and diffuse radiation fractions, and ozone concentrations can
be more fully explored. Future research on crop yield impacts will
likely use a two-step process, whereby emissions are related to ra-
diation and ozone, which are then related to yields (e.g., a two-stage
least squares estimation, not a dose–response estimate).
Climate and pollution interconnectedness.One of the main difficulties
in using panel regression analysis to tease out the impacts of
SLCPs on yields is the interconnected nature of emissions and
climate variables. As mentioned in the main text, SLCPs have
their own independent impacts directly on plant growth (ozone)
and via surface radiation changes (aerosols); they also impact re-
gional and global climate, which is then in turn reflected in tem-
perature, precipitation, and radiation changes. Beyond the aerosol
indirect and semidirect effects, there are additional interactions
among the predictor variables that are not addressed in this study.
For example: the rate of formation of tropospheric ozone depends
on temperature and radiation, as well as the emission of ozone
precursors; the presence of tropospheric ozone also alters surface
radiation. For simplicity, and because of lack of degrees of freedom,
we do not include these secondary interaction terms.
Carbon monoxide and alternate ozone specifications.We conducted our
analysis with several variations on the ozone precursor specifi-
cations presented in the main text and this SI Text. For example,
we substituted carbon monoxide for NMVOCs (and an analogous
CO:NOx ratio). We also ran a variation using CO+NMVOC. Our
results are robust to such changes; the differences on all are within
several percentage points (some larger, some smaller). This find-
ing makes sense, as rising CO levels are linked to changes in
background ozone but are not thought to contribute as much to
the spatial heterogeneity of surface ozone documented over

this region. Future research can leverage the increasing network
of surface ozone measurements as well as remote sensing of
different species. The alternate ozone specifications presented
in Fig. S10 are:

i) ln(NOx) only → a simple model using only NOx emissions;
ii) ln(NMVOC) only → models with only NMVOC emissions;
iii) ln(NOx) + ln(NMVOC):ln(NOx) → only NOx and the ratio

of NMVOCs to NOx;
iv) ln(NMVOC):ln(NOx) + ln(BC):ln(SO2) → only the ratios of

ozone precursors and the ratio of absorbing to scattering
aerosols;

v) ln(NOx+NMVOC) + ln(NMVOC):ln(NOx) + ln(BC+SO2) +
ln(BC):ln(SO2) → grouped aerosols, grouped precursors,
and ratios;

vi) The main model presented in the paper, but with year fixed
effects as opposed to linear and quadratic time trends. As
expected, the addition of year fixed effects swallows much of
the interannual variation in climate.

In addition, models using only NMVOCs, models using non-
logged versions of variables, models incorporating CO both in-
dividually and as part of the VOC:NOx ratio, and models in-
corporating organic carbon individually and as part of aerosol
totals show very similar results.
Alternative climate and emissions data.As a robustness check, we ran
our analysis with alternative climate and emissions datasets. First,
we used the temperature and precipitation data from the Climatic
ResearchUnit at East Anglia (half-degree data fromCRUTS3.21)
(9). Based on findings from previous analyses that showed dif-
ferent crop sensitivity to minimum and maximum temperatures,
we also ran our model with Tmin and Tmax (10). Finally, we used
a new aerosols inventory of BC, organic carbon, and sulfur di-
oxide (from ref. 11) to check inventory sensitivity. The Lu and
Streets inventory (Fig. S11) only begins in 1996; we merged these
data with Regional Emissions Inventory in Asia (REAS) data by
scaling so that values in 1996 were equal. As shown in Fig. S12,
our findings are not sensitive to different climate specifications;
the use of the Lu et al. (11) data reduce the magnitude of impacts
but maintains the same state-by-state pattern. The overall scale of
discrepancy between the inventories (e.g., statewide differences in
1996 data) may explain some of this change.
Carbon dioxide (CO2) fertilization. We do not explicitly include any
measures of CO2 fertilization in our model. Rather, these effects
are aliased into the time trends. Inclusion of CO2 fertilization
directly in our model would be problematic because CO2 is well-
mixed in the atmosphere: because this study uses exposure
metrics averaged over crop growing area and growing season,
exposure trends are similar over the entire growing area, and
effects on each crop should likewise be fairly constant. Never-
theless, it is possible to estimate the average CO2 impact. Free-air
CO2 enrichment experiments on C3 crops (including rice and
wheat) estimate a 14% increase in crop yields when ambient CO2
is increased from 367 ppm to 583 ppm, or 0.065% yield change
per 1-ppm increase in CO2 (1, 12). Over the course of this study,
average CO2 concentrations increased from 337 ppm to 390 ppm
(keelingcurve.ucsd.edu), which would correspond to a yield in-
crease of just under 3.5%. In certain states, this result offsets the
direct temperature and precipitation effects, but does not offset
the pollution impacts. Moreover, because CO2 is emitted in the
same combustion processes as aerosols (e.g., coal combustion)
and ozone precursor compounds (e.g., transportation), our study
points to the further complications in isolating CO2 impacts on
crop yields.
Alternative time controls. Several previous statistical panel studies of
climate impacts on yields include year fixed effects (FE), which
account for events (like economy-wide shocks) affecting the
entire study region in given years. We present results of our model
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with the inclusion of year FE in Fig. S10. The trends are similar,
but the overall magnitude of SLCP impacts is larger. When year
FE are included, climate impacts are predictably smaller given
that the year FE consume much of the variation in the climate
signal. As this reduction in signal-to-noise can magnify any
measurement or data errors, we choose to omit year FE in our
main analysis (13).
Kharif-only analysis. We group our analysis by crop under the as-
sumption (informed by chamber and field studies) that the re-
lationship between SLCPs and crop yields should be crop-specific.
(That is, even though we include both rabi rice and kharif rice states
in our rice analysis, the climate and pollution variables are aver-
aged over the particular state-crop season.) However, to verify that
the inclusion of the two main rabi-producing states is not driving
the rice results (e.g., because different cultivars are used in the two
seasons or because SLCP impacts are expected to be higher during
the dry season), we also present kharif-only analysis in Fig. S13.
Results are similar, though of a slightly smaller magnitude.

Model Limitations. Model training. To illustrate that our results are
not being driven by particular years or states, we ran our wheat
analysis with a subset of data (even years). We then applied those
coefficients to the rest of the data (odd years). The results are
shown in Fig. S14.
Explanatory power of different variables. The inclusion of state-
specific time trends in our model effectively detrends the data; our
model thus asks how much of the variation in year-to-year de-
meaned yields (e.g., Figs. S2 and S3) is explained by the fluctu-
ations in demeaned climate and emissions variables. The relative
importance of the time trends can be seen by first regressing the
yield, climate, and pollution variables on the state-specific time
trends (i.e., explicitly detrending them) and then regressing the
yield residuals on the climate and pollution residuals. The
coefficients for the explanatory variables will be identical (Frisch–
Waugh–Lovell theorem). By comparing these two regressions,
we find that the state-specific time trends explain most (about
89%) of the variation in yields. In addition, we can compare
a regression of the yield residuals on climate residuals (alone)

versus both climate and pollution residuals to compare whether
(and how much) the pollution variables add to the model ex-
planatory power. We found that the explanatory power of the full
climate-and-pollution model is better than a model with only
climate variables and no pollution variables. Table S2 summa-
rizes these results; the detrended relationship is also shown in the
inset of Fig. S14.
These results are not surprising. That is, the pollution variables

increase the power of the year-to-year predictions, but not by all
that much, in part because year-to-year fluctuations aren’t that
large in the emissions variables (as seen from the time series
plots of emissions in Figs. S5–S7). Put another way, the signal-to-
noise ratio for the pollution variables is low. This analysis illus-
trates the need for larger studies over more widely varying pol-
lution regimes or the leveraging of natural experiments that
produce greater year-to-year variation in emissions. In addition,
a finer-grained look at management practices may help gain le-
verage on the remaining variation.
Collinearity. In addition to low signal-to-noise for the emissions
variables, our analysis is limited because of multicollinearity, or
the strong linear correlation of independent variables in a re-
gression analysis (in this case, the emissions variables, which are
all fairly monotonically increasing over time) (Figs. S5–S7, S11,
and Table S3). The presence of multicollinearity does not un-
dermine the reliability of the model as a whole (e.g., results in
Fig. 3), but it affects our ability to distinguish with certainty the
individual impact of the correlated variables, as the variances are
inflated. It is for this reason that we are unable to quantify with
certainty the relative impacts of aerosols versus ozone within
SLCP impacts. In general, the antidote to multicollinearity is
more data, adding for example, other countries to a dataset or
undertaking analysis at a smaller unit of scale. The latter is only
a limited option in this case, as relating local emissions to local
yield changes would become invalid at a smaller scale (because
of shorter-range pollutant transport). However, expanding the
analysis to include other regions of the world (as data become
available) points to a promising future avenue of research.
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Fig. S1. Historic wheat and rice production in India, 1961–2012.
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Fig. S2. (Top) Wheat yields in the main wheat-producing states in India. (Bottom) Detrended wheat yields, showing deviation from fitted state-specific linear
trends. Data from IndiaStat.com (1).

1. Datanet India, IndiaStat. Available at www.indiastat.com. Accessed July 17, 2012.
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Fig. S3. (Top) Rice yields in the main rice-producing states in India. (Bottom) Detrended rice yields, showing deviation from fitted state-specific linear trends.
Data from IndiaStat.com (1).

1. Datanet India, IndiaStat. Available at www.indiastat.com. Accessed July 17, 2012.
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Fig. S4. Growing season temperature and precipitation trends for major rice- and wheat-producing states in India, 1980–2010.
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Rice Aerosol Emissions and Radiation Trends
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Fig. S5. (Top) Trends in total average daily surface radiation over the kharif rice growing season, by state. State-specific linear dimming trends (fitted slopes)
shown in the legend. Data from the World Radiation Data Centre (1). (Bottom) Emissions of (Left) SO2 and (Right) BC by state over the season, with state-
specific linear emissions trends (fitted slopes) shown in the legend. Data from the REAS emissions inventory (2).

1. World Radiation Data Center (WRDC), Global Radiation Data. Available at wrdc.mgo.rssi.ru. Accessed June 9, 2011.
2. Ohara T, et al. (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos Chem Phys 7:4419–4444.

Burney and Ramanathan www.pnas.org/cgi/content/short/1317275111 7 of 14

http://wrdc.mgo.rssi.ru
www.pnas.org/cgi/content/short/1317275111


1980 1985 1990 1995 2000 2005 2010

160

170

180

190

200

210

220

Year

A
ve

ra
ge

 T
ot

al
 S

ur
fa

ce
 R

ad
ia

tio
n 

[W
m

2 ]

Haryana :  -1.11 W/m2/yr
Punjab :  -1.28 W/m2/yr
Rajasthan :  -0.51 W/m2/yr
Bihar & Jharkhand :  -0.78 W/m2/yr
Madhya Pradesh & Chhattisgarh :  -0.58 W/m2/yr
Uttar Pradesh & Uttaranchal :  -0.85 W/m2/yr

Wheat Aerosol Emissions and Radiation Trends
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B&J :  0.00242 kg/ha/month/yr
MP&C :  0.00062 kg/ha/month/yr
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Fig. S6. (Top) Trends in total average daily surface radiation over the wheat growing season, by state. State-specific linear dimming trends (fitted slopes)
shown in the legend. Data from the World Radiation Data Centre (1). (Bottom) Emissions of (Left) SO2 and (Right) BC by state over the season, with state-
specific linear emissions trends (fitted slopes) shown in the legend. Data from the REAS emissions inventory (2).

1. World Radiation Data Center (WRDC), Global Radiation Data. Available at wrdc.mgo.rssi.ru. Accessed June 9, 2011.
2. Ohara T, et al. (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos Chem Phys 7:4419–4444.
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Fig. S7. Trends in NOx and NMVOC emissions for major wheat- and rice-producing states in India, 1980–2010. Data from REAS emissions inventory (1).

1. Ohara T, et al. (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos Chem Phys 7:4419–4444.
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Fig. S8. Average wheat growing season emissions of SO2, BC, NMVOC, and NOx in 2008. Data from the REAS emissions inventory (1).

1. Ohara T, et al. (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos Chem Phys 7:4419–4444.
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Fig. S9. State-by-state breakdown of impacts of technology/time trends, climate, and pollution for wheat-producing states.
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(b) NOx and NMVOC(a) NOx Only

(c) NOx and Ratio (d) Both Ratios

(e) Grouped Aerosols and Precursors (f) Main Model with Year Fixed Effects

Fig. S10. Alternative model specifications for wheat. These models use different specifications for ozone precursor and aerosol emissions, as shown in the
figure legend. Models are described in more detail in SI Text.
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Black Carbon

Fig. S11. Emissions trends from Lu and Streets aerosols inventory (1). The inventory begins in 1996; we merged these data with REAS data by scaling so that
values in 1996 were equal.

1. Lu Z, Zhang Q, Streets DG (2011) Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmos Chem Phys 11:9839–9864.
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(b) CRU Tmin and Tmax (REAS Emissions)

(a) CRU (REAS Emissions)

(c) UDel Climate and Streets Emissions

Fig. S12. Analysis with alternative climate and emissions datasets. CRU data are from the Climatic Research Unit at East Anglia; we used half-degree data from
CRUTS3.21 (1). The first specification (A) replicates the main model presented in the paper, but with CRU data replacing University of Delaware data. The second
specification (B) uses Tmin and Tmax, as recent research has shown that crops are sensitive in different ways to these two quantities (2). The third specification (C)
uses a different, higher-resolution (0.1° × 0.1°) emissions inventory for the aerosols portion of the model. The Streets inventory of black carbon, organic carbon,
and sulfur dioxide (3) begins in 1996; we merged these data with REAS data by scaling so that values in 1996 were equal.

1. Climatic Research Unit, High-Resolution Gridded Climate Datasets (CRU TS3.21). Available at www.cru.uea.ac.uk/cru/data/hrg. Accessed May 5, 2014.
2. Welch JR, et al. (2010) Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum andmaximum temperatures. Proc Natl Acad Sci USA 107(33):14562–14567.
3. Lu Z, Zhang Q, Streets DG (2011) Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmos Chem Phys 11:9839–9864.

Burney and Ramanathan www.pnas.org/cgi/content/short/1317275111 12 of 14

http://www.cru.uea.ac.uk/cru/data/hrg
www.pnas.org/cgi/content/short/1317275111


Total (weighted by area)

Andhra Pradesh

Haryana

Orissa

Punjab

Tamil Nadu

West Bengal

Bihar & Jharkhand

Madhya Pradesh & Chhattisgarh

Uttar Pradesh & Uttaranchal

Relative Yield Change [%]

−100 −50 0 50−100 −50 0 50−100 −50 0 50

(85%)

(10%)

(4%)

(7%)

(13%)

(5%)

(13%)

(10%)

(7%)

(16%)

Total:  −17.89 %
Climate:  1.13 %

SLCP:  −19.03 %

Climate
Pollution

Kharif Rice

Fig. S13. Main model with only kharif (rainy season) rice.
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Fig. S14. Even-odd analysis. Main plot shows predicted versus actual wheat yields for model fit to even-year data (black), and predictions (from even-year fit)
to odd-year data. Inset shows fits from residuals of detrended variables.
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Table S1. Regression coefficients for wheat and rice (Eq. 1)

Variables

Wheat Rice

ln(Yield) ln(Yield)

T −0.051** (0.021) −0.552 (0.601)
T2 −0.000 (0.005) −0.130 (0.492)
P −0.015 (0.015) −0.040 (0.026)
P2 0.002 (0.006) 0.007 (0.017)
ln(BC) 0.247 (0.182) 0.193 (0.332)
ln(SO2) −0.756*** (0.238) −0.562 (0.532)
ln(NOx) −7.228** (3.511) 0.483 (7.875)
ln(NMVOC) 7.111** (3.294) 0.328 (7.403)
ln(NOx): ln(NMVOC) 162.145** (76.157) −5.462 (170.982)
Year 0.035*** (0.009) 0.021 (0.016)
Year2 −0.002*** (0.000) −0.000 (0.001)
Constant −168.392** (81.200) 25.634 (185.259)
Observations 186 341
R2 0.9999 0.9998
rmse 0.0704 0.128

SEs in parentheses; ***P < 0.01, **P < 0.05, *P < 0.1. State-specific inter-
cepts and linear and quadratic time coefficients not shown for brevity. Co-
efficients for T and T2, P and P2, and ozone precursors must be interpreted
collectively. For wheat, temperature is statistically significant at 90% (P =
0.051), aerosols are significant at 99% (P = 0.003), and ozone precursors are
significant at 90% (P = 0.056). For rice, temperature is statistically significant
at 95% (P = 0.016), aerosols are not statistically significant, and ozone pre-
cursors are significant at 99% (P = 0.005).

Table S2. Explanatory power of time trend, climate, and
pollution variables

Model Adjusted R2 rmse

Full model 0.9687 0.0704
Detrended model (climate and

pollution variables)
0.0746 0.0669

Detrended climate-only model 0.0346 0.0683

Table S3. Correlations between state-level variables for wheat analysis

Year Temperature Precipitation ln(SO2) ln(BC) ln(NOx) ln(NMVOC)

Year 1.0000
Temperature 0.1110 1.0000
Precipitation −0.0970 −0.1952 1.0000
ln(SO2) 0.4667 0.2996 0.5766 1.0000
ln(BC) 0.2485 0.2066 0.4268 0.8532 1.0000
ln(NOx) 0.4560 0.2285 0.6026 0.9848 0.8256 1.0000
ln(NMVOC) 0.1407 −0.0536 0.5734 0.7781 0.9054 0.7990 1.0000
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